. < NN N\ N\
F PiterPy SN N NN\

TECHNICAL CONFERENCE FOR
HARDCORE PYTHON DEVELOPERS

SAINT PETERSBURG
w 2019 NOVEMBER 1

0o Picrey AT

GraphQL + Python today.
Build Public APl over GraphQL

Sergey Khaletskiy
@sierjkhaletski

EPAM
Lead Software Engineer

Agenda

Where are we now?

GraphQL at a Glance

Frameworks & Ul

Pythoen Django + GraphQL. Public API
Django Batteries

Performance & Security

API Versioning

File uploading

O O OO0 O O O O

N

@ PiterPy

Where are we now?

@ PiterPy

Where are we going?

il

DATA GRAPH

cu =u e

GraphQLl at a Glance

o GraphQLlis a contract
REST - architectural style, GraphQL - query language that has been defined to ensure its
consistency

o Schemais a core

Each request to the server must be defined in the schema
o Single endpoint

Only one entry point, e.g. /api/graphql/

o Query

Message to the server to request certain data. The language itself loosely resembles JSON
o Mutation

Unlike query, mutation is used to mutate the data
o POSTge

Communicate only against POST requests

PiterPy e N e\

=
|

| PiterPy

Principal GraphQL

https://principledgraphqgl.com

One Graph

Federated Implementation

Track Schema in a Registry

Abstract, Demand-Oriented Schema

Use an Agile Approach to Schema Development
Iteratively Improve Performance

Use Graph Metadata to Empower Developers
Access and Demand Control

Structured Logging

Separate the GraphQL Layer from the Service Layer

=
|

| PiterPy

Principal GraphQL

https://principledgraphql.com

One Graph

Federated Implementation

Track Schema in a Registry

Abstract, Demand-Oriented Schema

Use an Agile Approach to Schema Development
Iteratively Improve Performance

Use Graph Metadata to Empower Developers
Access and Demand Control

Structured Logging

Separate the GraphQL Layer from the Service Layer

. AN N N
@ PiterPy NN N\

What do we use?

Cannula
like

Starlette -
@J UU T e PI?)F/)ground

=
|

Why not REST?

o Over-fetching problem

o Not clear how to deprecate obsolete data

o Responses for a few devices could be different
o GraphQL query is pretty similar for response

o GraphQL can provide us exhaustive analytics

for each kind of data

i PiterPy P T Y W

A

= PiterPy

Where is a practice?

e W o UV o UV o
P PiterP m
gﬁ y

Believe in the Magic

]

NN 4
P
)

@ PiterPy

Where were we...

v

=

NN\ N\ N\
° /\-/\/\N
ﬁ PiterPy NN N

... and what did we need?

= Public API

DataService

. AN N N
@ PiterPy NN N

... and what did we need?

= Public API

= Request side services in the same manner \
=

AccountService BillingService DataService

NN\ N\ N\
° /VW\/
ﬁ PiterPy

... and what did we need?

= Public API

= Request side services in the same manner \ :
= Same data as for internal services 4@

AccountService BillingService DataService

. AN N N
@ PiterPy NN N

... and what did we need?

= Public API !

= Request side services in the same manner \

= Same data as for internal services 4@

= Analytics over clients requests

AccountService BillingService DataService

. AN N N
@ PiterPy NN N

... and what did we need?

= Public API !

= Request side services in the same manner \

= Same data as for internal services 4@

= Analytics over clients requests

= As little as possible codebase changes

AccountService BillingService DataService

. AN N N
@ PiterPy NN N

... and what did we need?

= Public API !

= Request side services in the same manner \

= Same data as for internal services 4@

= Analytics over clients requests

= As little as possible codebase changes

| M a ke some mon ey @ AccountService BillingService DataService

. AN N N
@ PiterPy NN N

Actions

= Plug in graphene-django battery \ / E\ f

AccountService BillingService DataService

. AN N N
@ PiterPy NN N\

Actions

» Use the same models for resolvers @

* Plug in graphene-django battery \ / E\ f

AccountService BillingService DataService

. AN N N
@ PiterPy NN N

Actions

= Plug in graphene-django battery

» Use the same models for resolvers

% Analytics

= Deploy separately Public APl app

AccountService BillingService DataService

import graphene
from graphene_django.types import DjangoObjectType
from cookbook.ingredients.models import Category, Ingredient

G ra p h e n e Pyt h O n class CategoryType(DjangoObjectType):
class Meta:

model = Category

schema basic flow class IngredientType(DjangoObjectType):
class Meta:

model = Ingredient

class Query(object):
category = graphene.Field(CategoryType,
id=graphene.Int(),
name=graphene.String())
all_categories = graphene.List(CategoryType)

ingredient = graphene.Field(IngredientType,
id=graphene.Int(),
name=graphene.String())

all_ingredients = graphene.List(IngredientType)

def resolve_all_categories(self, info, **kwargs):
return Category.objects.all()

def resolve_all_ingredients(self, info, **kwargs):
return Ingredient.objects.all()

def resolve category(self, info, **kwargs):
id = kwargs.get(
name = kwargs.get()

if id is not None:
return Category.objects.get(pk=1id)

if name is not None:
return Category.objects.get(name=name)

return None

def resolve_ingredient(self, info, **kwargs):
id = kwargs.get()
name = kwargs.get()

if id is not None:
return Ingredient.objects.get(pk=1id)

if name is not None:
return Ingredient.objects.get(name=name)

return None

. NN TN
é PiterPy N N N\

e PiterPy

Graphene Python

custom scalar

import datetime
from graphene.types import Scalar
from graphql.language import ast

class DateTime(Scalar):

@staticmethod
def serialize(dt):
return dt.isoformat()

@staticmethod
def parse_literal(node):
if isinstance(node, ast.StringValue):
return datetime.datetime.strptime(
node.value,

@staticmethod
def parse_value(value):
return datetime.datetime.strptime(value,

é PiterPy

Graphene Python

query example

N A W N R
]
-

4

PR
© ©WoNO

B WN R

N
Jo

recipe(id: "UmVjaXB1TmOkZTox") {
id
instructions
amounts {
edges {
node {
ingredient {
id
name

¢ "UmVjaXB1Tm9kZTox",
"instructions": "Do everything on you

"ingredient": {
"id": "SW5ncmVkaWVudESvZGUEMQ==

"ingredient": {
: "SW5ncmVkaWVudESvZGUENA==

"ingredient": {
"id": "SW5ncmVkaWVudESvZGU6EMg==

M—/\N
/VW\/
Ll
ﬁ PiterPy N N N\
s e e WY
p y class Query(object):
A category = Node.Field(CategoryNode)
batching all_categories = DjangoFilterConnectionField(CategoryNode)

ingredient = Node.Field(IngredientNode)
all_ingredients = DjangoFilterConnectionField(IngredientNode)

{
3 | ategor \‘,{
jesq{
ode{
ingredientsq{ SELECT * FROM WHERE =
edges{ SELECT * FROM WHERE =
node{ SELECT * FROM WHERE =
n SELECT * FROM WHERE =
} SELECT * FROM WHERE =
}
}
}
}
}
}

Defeats N+1 problem

Based on DatalLoader approach

Implementation is absolutely on developer flavor
Works in pair with caching

O O O O

Graphene Python

batching

1 from collections import defaultdict

2 from promise import Promise

3 from promise.dataloader import Dataloader

} from cookbook.ingredients.models import Ingredient

class IngredientsByCategoryIdLoader(DatalLoader):
def batch_load_fn(self, category_ids):
C ingredients_by_cat_id = defaultdict(list)
1(for ingredient in Ingredient.objects.filter(category__in=category_1ids).iterator():
11 ingredients_by_cat_id[ingredient.category_1id].append(ingredient)
12 return Promise.resolve([ingredients_by cat_1id.get(category_1id, [])
: for category_id in category_1ids])

PiterPy Y e e

Graphene Python

batching

1 # cookbook/context.py file

from django.utils.functional import cached_property
from cookbook.dataloaders import IngredientsByCategoryIdLoader

) class GraphQLContext:
def __init__(self, request):
self.request = request

@cached_property
def user(self):
return self.request.user

@cached_property
def ingredients_by_category_id_loader(self):
return IngredientsByCategoryIdLoader()

1 # cookbook/views.py file
from graphene_django.views import GraphQLView
3 from cookbook.context import GraphQLContext

class GraphQLContextView(GraphQLView):
def get_context(self, request):
return GraphQLContext(request)

NN\ N\ N\
° /\-/\/\N
é PiterPy

@ PiterPy A

v graphdgl

Graphene Dja ngo Vv accounts

roject struct
project structre @ resolvers.py

@ schema.py
@ types.py
@ utils.py
Vv billing
@ resolvers.py
@ schema.py
@ types.py
@ utils.py

@ publicapi.py

o Keep all APl relations in one folder graphql/

. e Y a e
é PiterPy TN

Graphene Django

X # publicapi.py file
project structure

import graphene
from graphene_django.debug import DjangoDebug

from graphql.accounts.schema import Query as AccountsQuery
from graphql.billing.schema import Query as BillingQuery

class Query(
AccountsQuery,
BillingQuery,
graphene.0ObjectType

debug = graphene.Field(DjangoDebug, name=)

schema = graphene.Schema(query=Query)

o publicapi.py imports all modules form
graphgl and exposes the schema

p PiterPy

Graphene Python

Pros

Easy install & deploy

Common code base with Django
Extendable. Easy to create custom scalars
Ul out of the box (GraphiQL)

Testable

P PiterPy

Graphene Python

Pros

NN\ N\ N\
NN\ N\ N\
Y e Ue U
S U o
Easy install & deploy
Common code base with Django
Extendable. Easy to create custom scalars
Ul out of the box (GraphiQL)
Testable
Cons

o Query cost is unknown. There is no way to manage query depth
o Not all features are documented. Sources reading

o Caching on your own

o Multiple schemas serving is unsupported

o Require 3rd-party batteries

p PiterPy

Django Batteries

django-graphql-jwt

Mutation Body

mutation {
jwtCreate(login:"login@email.com", password:"example_password"™) {
token
user {
id
username
}
}
i

. AN N N
@ PiterPy NN N\

Django Batteries

django-graphql-jwt

Mutation Body Response Body
mutation { {
jwtCreate(login:"login@email.com assword: "example_password" "data":
tCreate(l "l @ 1 ", d 1 d' data tc{ e g
"jwtCreate":
token "token": "eyJhbGci0ilIUzIINiISINRSCCIEIKpXVCI9
user { . eyJzdWIi0iIxMMONTY30DkwIiwibmFtZSI6IkpvaG4gRGI1IiwiaWFOIjoxNTE2MMSMDIyFQ
id . SFLKxwRJISMeKKF2QT4fwpMeJf36P0koyJV_adQssw5c",
"user": {
username "id": "da4d5a62-b8f1-4ad7-970f-652fdbSebede”,
} "username": "superduperuser"
}
} }
}
}

Pass the provided JWT token into Authorization header for subsequent requests

° /W
ﬁé PiterPy Y N\
Django Batteries
django-graphql-jwt
o @login_required
import graphene
o (@user_passes_test from graphql_jwt.decorators import login_required
o ermission_required
@p —req class Query(graphene.ObjectType):
viewer = graphene.Field(UserType)

o @staff_member_required

. @login_required
o (@superuser_required def resolve_viewer(self, info, **kwargs):
return info.context.user

et
<=

Django Batteries

graphene-django-optimizer

”"Optimize queries executed by graphene-django automatically,
using select_related, prefetch_related and only methods of Django QuerySet”

& PiterPy NN\,

i PiterPy

Django Batteries

graphene-django-optimizer

Request Body

{
id

id
}
}
}
Response Body

optimized queryset:

@ PiterPy

What else?

]

L
NP
/7\\

¢

<>§.
,ji}?o

@ PiterPy

What else?

Starlette

. AN N N
@ PiterPy NN N\

What else?

Starlette

Lightweight ASGI framework/toolkit, which is ideal for building high performance asyncio services.

=
——

i PiterPy

a_;llﬂlll!!!:;iﬂl '

Starlette

Seriously impressive performance.
WebSocket support.

GraphQL support.

In-process background tasks.
Startup and shutdown events.
Test client built on requests.

CORS, GZip, Static Files, Streaming.
Session and Cookie support.

100% test coverage.

100% type annotated codebase.

Zero hard dependencies.

=
——

i PiterPy

a_;llﬂlll!!!:;iﬂl '

Starlette

Seriously impressive performance.
WebSocket support.

GraphQL support.

In-process background tasks.
Startup and shutdown events.
Test client built on requests.

CORS, GZip, Static Files, Streaming.
Session and Cookie support.

100% test coverage.

100% type annotated codebase.

Zero hard dependencies.

=
——

i PiterPy

a_;llﬂlll!!!:;iﬂl '

Starlette

Seriously impressive performance.
WebSocket support.

GraphQL support.

In-process background tasks.
Startup and shutdown events.
Test client built on requests.

CORS, GZip, Static Files, Streaming.
Session and Cookie support.

100% test coverage.

100% type annotated codebase.

Zero hard dependencies.

. AN N N
@ PiterPy NN N

Starlette: GraphQL

from graphqgl.execution.executors.asyncio import AsyncioExecutor
from starlette.applications import Starlette

from starlette.graphql import GraphQLApp

import graphene

class Query(graphene.ObjectType):
hello = graphene.String(name=graphene.String(default_value=))
async def resolve_hello(self, info, name):
We can make asynchronous network calls here.
return + name

app = Starlette()

We're using “executor_class=AsyncioExecutor” here.
app.add_route(, GraphQLApp(schema=graphene.Schema(query=Query), executor_class=AsyncioExecutor))

AN TN TN
° W
ﬁ PiterPy

Starlette: Background Tasks

class Query(graphene.ObjectType):
user_agent = graphene.String()

def resolve_user_agent(self, info):

user_agent = request.headers.get(5
background = info.context[
background.add_task(log_user_agent, user_agent=user_agent)
return user_agent

async def log_user_agent(user_agent):

@ PiterPy

Something else...

]

Lo

P

//O\\
£

¢

; #

@ PiterPy

Something else...

@ PiterPy

Something else...

e W o UV o UV o
ﬁ @ PiterPy AN

A G ria d ne o Asynchronous

o Schema-first approach to the APl implementation
o Simple

o Extensible

o Starlette is used for ASGI

o Dev server (synchronous!)

o Easy to implementing GraphQL in existing sites

(WSGI middleware or Django GraphQL Views)

| PiterPy

/A\ ariadne

Compatibility with GraphQL.js version 14.4.0
Queries, mutations and input types
Subscriptions

File uploads

Custom scalars and enums

Loading schema from .graphql files

GraphQL syntax validation via gql() helper function

from ariadne import ObjectType, QueryType, gql, make_executable_schema
from ariadne.asgi import GraphQL

type_defs = gql(

)

Map resolver functions to Query fields using QueryType
query = QueryType()

Resolvers are simple python functions
@query.field(
def resolve_people(*_):
return [
8 y 8 P 1 21},
{ : , : , : 24},

Map resolver functions to custom type fields using ObjectType
person = ObjectType()

@person. field()
def resolve_person_fullname(person, *_):
return % (person| 1, person[1)

Create executable GraphQL schema
schema = make_executable_schema(type_defs, [query, person])

Create an ASGI app using the schema, running in debug mode
app = GraphQL(schema, debug=True)

et
<=

GraphQL: API Versioning

“"GraphQL takes a strong opinion on avoiding versioning by providing the
tools for the continuous evolution of a GraphQL schema.”

& PiterPy NN\,

g | Ve W W a U O,

GraphQL: Files Uploading

o REST endpoint in front of GraphQL mutation

upload via REST and pass a resulted URL into GraphQL mutation.

o Upload files as Base64 Encoded String

encoded string sends with GraphQL mutation. Resource intensive and it is sometimes fraught with errors.

o Using of an external URL (such as AWS S3, Google Cloud Storage etc.)

once file uploaded to S3 then generated URL can be used to pass a GraphQL mutation

o Using graphene-file-upload battery

based on GraphQL multipart request specification (https://github.com/jaydenseric/graphql-multipart-request-spec)

Conclusion

o GraphQL Public APl in production

indeed, easy to build Public APl on application in production
o Alllibs are production ready and permanently evaluates

o Don’t worry. Django is close
all reviewed frameworks have Django wrappers or can combined

o Control requests depth

try to prevent client outrage

o GraphQL will not solve your APl design problems

“If you suck at providing REST API You'll suck at providing GraphQL API”
@apihandyman

=
|

PiterPy

Useful Links

https://github.com/graphal-python/graphene-django

https://github.com/flavors/django-graphgl-jwt

https://github.com/tfoxy/graphene-django-optimizer

https://github.com/graphql-python/graphal-core-next

https://github.com/rmyers/cannula

https://github.com/mirumee/ariadne

https://github.com/encode/starlette

https://github.com/strawberry-graphql/strawberry

https://github.com/encode/uvicorn

https://github.com/kensho-technologies/graphaql-compiler

https://github.com/graphql-python/graphene-django
https://github.com/flavors/django-graphql-jwt
https://github.com/tfoxy/graphene-django-optimizer
https://github.com/graphql-python/graphql-core-next
https://github.com/rmyers/cannula
https://github.com/mirumee/ariadne
https://github.com/encode/starlette
https://github.com/strawberry-graphql/strawberry
https://github.com/encode/uvicorn

Questions

