

GraphQL + Python today.
Build Public API over GraphQL

Sergey Khaletskiy
@sierjkhaletski

EPAM
Lead Software Engineer

o Where are we now?
o GraphQL at a Glance
o Frameworks & UI
o Python Django + GraphQL. Public API
o Django Batteries
o Performance & Security
o API Versioning
o File uploading

Agenda

Where are we now?

Where are we going?

GraphQL at a Glance
o GraphQL is a contract

REST - architectural style, GraphQL - query language that has been defined to ensure its
consistency

o Schema is a core
Each request to the server must be defined in the schema

o Single endpoint
Only one entry point, e.g. /api/graphql/

o Query
Message to the server to request certain data. The language itself loosely resembles JSON

o Mutation
Unlike query, mutation is used to mutate the data

o POSTge
Communicate only against POST requests

Principal GraphQL
https://principledgraphql.com

o One Graph

o Federated Implementation

o Track Schema in a Registry

o Abstract, Demand-Oriented Schema

o Use an Agile Approach to Schema Development

o Iteratively Improve Performance

o Use Graph Metadata to Empower Developers

o Access and Demand Control

o Structured Logging

o Separate the GraphQL Layer from the Service Layer

Principal GraphQL
o One Graph

o Federated Implementation

o Track Schema in a Registry

o Abstract, Demand-Oriented Schema

o Use an Agile Approach to Schema Development

o Iteratively Improve Performance

o Use Graph Metadata to Empower Developers

o Access and Demand Control

o Structured Logging

o Separate the GraphQL Layer from the Service Layer

https://principledgraphql.com

What do we use?

Why not REST?
o Over-fetching problem

o Not clear how to deprecate obsolete data

o Responses for a few devices could be different

o GraphQL query is pretty similar for response

o GraphQL can provide us exhaustive analytics

for each kind of data

Where is a practice?

?!

Believe in the Magic

Oops…

Where were we…

… and what did we need?

§ Public API

… and what did we need?

§ Public API

§ Request side services in the same manner

… and what did we need?

§ Public API

§ Request side services in the same manner

§ Same data as for internal services

… and what did we need?

§ Public API

§ Request side services in the same manner

§ Same data as for internal services

§ Analytics over clients requests

… and what did we need?

§ Public API

§ Request side services in the same manner

§ Same data as for internal services

§ Analytics over clients requests

§ As little as possible codebase changes

… and what did we need?

§ Public API

§ Request side services in the same manner

§ Same data as for internal services

§ Analytics over clients requests

§ As little as possible codebase changes

§ Make some money J

Actions

§ Plug in graphene-django battery

Actions

§ Plug in graphene-django battery

§ Use the same models for resolvers

Actions

§ Plug in graphene-django battery

§ Use the same models for resolvers

§ Deploy separately Public API app

Graphene Python
schema basic flow

Graphene Python
custom scalar

Graphene Python
query example

Graphene Python
batching

o Defeats N+1 problem
o Based on DataLoader approach
o Implementation is absolutely on developer flavor
o Works in pair with caching

Graphene Python
batching

Graphene Python
batching

Graphene Django
project structure

o Keep all API relations in one folder graphql

Graphene Django
project structure

o publicapi.py imports all modules form
graphql and exposes the schema

Graphene Python
Pros

o Easy install & deploy

o Common code base with Django

o Extendable. Easy to create custom scalars

o UI out of the box (GraphiQL)

o Testable

Graphene Python
Pros

o Easy install & deploy

o Common code base with Django

o Extendable. Easy to create custom scalars

o UI out of the box (GraphiQL)

o Testable
Cons

o Query cost is unknown. There is no way to manage query depth

o Not all features are documented. Sources reading

o Caching on your own

o Multiple schemas serving is unsupported

o Require 3rd-party batteries

Django Batteries
django-graphql-jwt

Mutation Body

Django Batteries

Pass the provided JWT token into Authorization header for subsequent requests

Mutation Body Response Body

django-graphql-jwt

Django Batteries
django-graphql-jwt

o @login_required

o @user_passes_test

o @permission_required

o @staff_member_required

o @superuser_required

”Optimize queries executed by graphene-django automatically,
using select_related, prefetch_related and only methods of Django QuerySet”

Django Batteries
graphene-django-optimizer

Django Batteries
graphene-django-optimizer

Request Body

Response Body

What else?

What else?

What else?

Lightweight ASGI framework/toolkit, which is ideal for building high performance asyncio services.

o Seriously impressive performance.

o WebSocket support.

o GraphQL support.

o In-process background tasks.

o Startup and shutdown events.

o Test client built on requests.

o CORS, GZip, Static Files, Streaming.

o Session and Cookie support.

o 100% test coverage.

o 100% type annotated codebase.

o Zero hard dependencies.

o Seriously impressive performance.

o WebSocket support.

o GraphQL support.

o In-process background tasks.

o Startup and shutdown events.

o Test client built on requests.

o CORS, GZip, Static Files, Streaming.

o Session and Cookie support.

o 100% test coverage.

o 100% type annotated codebase.

o Zero hard dependencies.

o Seriously impressive performance.

o WebSocket support.

o GraphQL support.

o In-process background tasks.

o Startup and shutdown events.

o Test client built on requests.

o CORS, GZip, Static Files, Streaming.

o Session and Cookie support.

o 100% test coverage.

o 100% type annotated codebase.

o Zero hard dependencies.

Starlette: GraphQL

Starlette: Background Tasks

Something else…

Something else…

Something else…

o Asynchronous

o Schema-first approach to the API implementation

o Simple

o Extensible

o Starlette is used for ASGI

o Dev server (synchronous!)

o Easy to implementing GraphQL in existing sites

(WSGI middleware or Django GraphQL Views)

o Compatibility with GraphQL.js version 14.4.0

o Queries, mutations and input types

o Subscriptions

o File uploads

o Custom scalars and enums

o Loading schema from .graphql files

o GraphQL syntax validation via gql() helper function

o …

”GraphQL takes a strong opinion on avoiding versioning by providing the
tools for the continuous evolution of a GraphQL schema.”

GraphQL: API Versioning

GraphQL: Files Uploading
o REST endpoint in front of GraphQL mutation

upload via REST and pass a resulted URL into GraphQL mutation.

o Upload files as Base64 Encoded String
encoded string sends with GraphQL mutation. Resource intensive and it is sometimes fraught with errors.

o Using of an external URL (such as AWS S3, Google Cloud Storage etc.)
once file uploaded to S3 then generated URL can be used to pass a GraphQL mutation

o Using graphene-file-upload battery
based on GraphQL multipart request specification (https://github.com/jaydenseric/graphql-multipart-request-spec)

Conclusion
o GraphQL Public API in production

indeed, easy to build Public API on application in production

o All libs are production ready and permanently evaluates

o Don’t worry. Django is close
all reviewed frameworks have Django wrappers or can combined

o Control requests depth
try to prevent client outrage

o GraphQL will not solve your API design problems
“If you suck at providing REST API You’ll suck at providing GraphQL API”

@apihandyman

o https://github.com/graphql-python/graphene-django

o https://github.com/flavors/django-graphql-jwt

o https://github.com/tfoxy/graphene-django-optimizer

o https://github.com/graphql-python/graphql-core-next

o https://github.com/rmyers/cannula

o https://github.com/mirumee/ariadne

o https://github.com/encode/starlette

o https://github.com/strawberry-graphql/strawberry

o https://github.com/encode/uvicorn

o https://github.com/kensho-technologies/graphql-compiler

Useful Links

https://github.com/graphql-python/graphene-django
https://github.com/flavors/django-graphql-jwt
https://github.com/tfoxy/graphene-django-optimizer
https://github.com/graphql-python/graphql-core-next
https://github.com/rmyers/cannula
https://github.com/mirumee/ariadne
https://github.com/encode/starlette
https://github.com/strawberry-graphql/strawberry
https://github.com/encode/uvicorn

Questions

